A Survey on the Linux Random Number Generator

Shuai LI*
* Department of Computer Science
University of Calgary, Alberta, Canada
shuai.lil @ucalgary.ca

Abstract— The Linux random number generator (LRNG)
produces random data for many security related applications and
protocols. The generator is part of the Linux kernel open source
project which has different versions since the original one. The
survey describes the generator of Linux kernel version 2.6.30.7.
The study provides a comprehensive analysis of all functions
in LRNG as well as a security analysis against cryptographic
attacks.

I. INTRODUCTION

Random number generation has become a basis of modern
computational where security is involved. The random data
serves as keys in crypto systems, such as the secret key in
DES encryption system, the prime p,q in RSA encryption and
digital signature. Cryptographic protocols require random data.
Examples include big integers in Diffie-Hellman key exchange
protocol and nonces in challenge response authentication pro-
tocol. The security of these systems, protocols depends on
the unpredictable random bits. With the low quality random
bits, the attacker might guess these bits and then break the
cryptographic system.

There are two types of random number generator. True ran-
dom number generator(TRNG), pseudorandom number gen-
erator (PRNG). TRNG exploits the randomness from some
entropy source such as natural phenomena[3] and human game
play[1], however, such entropy input may produce bits that
are biased (the probability of 1 is not 0.5) or correlated
(the output of next bit depends on the previous bit). Passing
a de-skewing (processing function) is necessary to remove
biases and correlations. Although TRNG outputs non-periodic
and non-deterministic bits, it often has to wait until enough
entropy is collected. A pseudorandom number generator takes
a seed value which is a random bits and uses a deterministic
algorithm to produce sequences that appear to be random.
PRNGs are more efficient when generating a large amount
of sequences. PRNGssecure against cryptographic attacks are
cryptographically secure pseudorandom number generators
(CSPRNG). CSPRNG requires that i) the generators output bits
are unpredictable to an attacker without knowledge of internal
state of the generator. ii) An attacker which learn the state of
the generator at a certain time cannot compromise the outputs
at previous times and all future outputs. The Linux random
number generator is a CSPRNGI[5][2].

LRNG exploits randomness from system events inside the
kernel as entropy sources. The entropy is accumulated from
these entropy sources into the internal state of the generator.
A post-processing procedure outputS random bits and update
the internal state. The generator is used by internal kernel

functionalities and by user calls to its APIs. Linux provides two
character device interfaces to read random data. /dev/random
and /dev/urandom. The difference between these two APIs are
the level of randomness of the random bits and the resulting
delay. /dev/random is intended for applications which requires
a small number of extreme secure bits. Reading from this
device limits the number of generated bits depending on
entropy in LRNG. The second device /dev/urandom generates
less secure bits but never limit the random data generation.

The remainder of the report is organized as follows. In
section II, we provide background knowledge of random-
ness measurement and entropy. Section III gives a high-level
structure of the LRNG. Section IV includes discussions of
each building blocks and a complete procedure of generating
random data from each output pool. A security analysis of
version 2.6.30.7 is included in section V.

II. BACKGROUND
A. Measure of randomness

Once random bits are generated. It is important to deter-
mine how random the sequence is. One of the widely deployed
measurement is NIST statistical test[6]. The NIST statistical
test suite contains 15 tests to measure the randomness of
the generated binary sequence. Each statistical test determines
whether the sequence has a certain statistic property that
expected for a random sequence. The conclusion of each test
is not definite, but rather probabilistic. If a sequence passes
all tests, there is no gurantee that it is indeed produced by a
random bit generator.

Hypothesis Testing. A null hypothesis, Hy is an assertion
that a tested sequence is random. In contrast, the alternative
hypothesis, H, is an assertion that the tested sequence is not
random. Each test has a randomness statistic to determine
the acceptance or rejection of the null hypothesis. Given a
test sequence and a test, a theoretical reference distribution of
this statistic under an assumption of randomness is determined
by mathematical methods. From this reference distribution, a
critical value is determined (specific to the type of test, and
the sensitivity of the test). During a test, a test statistic value
is computed on the sequence being tested.. This test statistic
value is compared to the critical value. If the test statistic value
exceeds the critical value, the null hypothesis for randomness
is rejected. Otherwise, the null hypothesis is accepted.

B. Entropy

Entropy measures the uncertainty (in bits) of predicting the
value of a random variable.

Shannon Entropy: Shannon entropy, denoted as H(X)
is defined on a discrete random variable X [4]. It is the
average (expected) information from all outcomes. p(x) is the
probability of x.

H(X) ==Y p(x)logs(p(x))

zeX

Min Entropy: The min entropy is a lower bound of Shannon
Entropy. It is denoted as H..(X). If the probability distribution
of X is p1,p2,ps, ..., Pm, min entropy is defined as[4],

HOO(X) = 71092(max(p17p27p37 7pm)

The min entropy captures the refined uncertainty of predicting
the value of X when the attacker guesses the value of X with
highest probability.

IIT. GENERAL STRUCTURE

The general structure of LRNG mainly contians three
asynchronous procedures as depicted in Figure 1. In the first
procedure, the entropy is collected from system events. In the
second procedure, the entropy is accumulated into the internal
state of LRNG. The last procedure, the output is generated
by applying the output function on the internal state and the
internal state is updated.

Pools. The internal state of LRNG consists of three pools,
input pool, blocking pool and unblocking pool. The entropy
input collected from the system events is mixed into input
pool first. The size of the input pool is 128 words (4096
bits). The blocking pool and the unblocking pool are output
pools. The sizes of both output pools are 32 words. When
/dev/random is called, the output data is generated from the
blocking pool. When /dev/urandom is called by the user space
or get_random_bytes is called by internal kernel, output bits
are generated from the unblock pool.

Entropy Inputs an Accumulation. Entropy inputs provides
backbones of the security of LRNG. Entropy are collected and
mixed into the input pool asychronously and independtly from
output generation. TLRNG uses four different sources: mouse
and keyboard input, disk I/O operations, and specific interrupts.
For each event fed in to LRNG, three 32 bits input value are
recorded: a 32 bits value num representing the value and type,
a 32-bit value representing the jiffies count which corresponds
to the internal kernel counter of timer interrupts since the last
kernel boot. a 32 bit value representing the current CPU cycle
count. The latter two keeps the time information when the
event is mixed into the pool. The difference of jiffies associated
with successive events of the same type are used to estimate
the entropy provided by the event. More details of the entropy
estimation will be discussed in section IV-C.

The num, jif fies, cycle for the event are added to the
input pool one by one using the mixing functions described in
section IV-C. The estimated entropy of the event is added to
the input pools entropy counter.

Entropy Counter check. Each pool has an entropy counter
which estimate the current entropy in the pool. This is an

integer between 0 and the size of the pool in bits. The range
of the counter for input pool is [0,4096] while the range of
the counter for both output pools are [0, 1024]. Three entropy
counters are vital to the correct functioning of LRNG. For
entropy accumulation, the entropy counter of input pools is
increased by the amount of estimated entropy from the entropy
source. For output generation, two different cases are consid-
ered separately. One is generating data from /dev/random, the
other one is generating data from /dev/urandom. In the first
case, /dev/random is called to generate k bytes random data,
the blocking pool will request to collect 8k bits of entropy
from the input pool. If input pool contains enough entropy,
the input pool will extract 8k bits of entropy using the output
function and the counter of the input pool decrements by 8k
bits. The output of the input pool is mixed into the blocking
pool using the same mixing function mentioned above and the
counter of blocking pool increasesby 8k bits. Otherwise, the
block pool blocks and waits until enough entropy is collected
by the input pool. After generating the k bytes random data
using the same output function, the counter of the blocking
pool decrements by 8k bits. In the second case, /dev/urandom
is called to generate k bytes random data. Even if input pool
does not contain enough entropy, the nonblocking pool will
generate k bytes data. The counter of the non blocking pool is
decremented by 8k bits. If the current value of the nonblocking
pools counter is 0, the counter value will not change. It is
worth to note that the entropy counter of the output pools will
generallyremain close to zero since the amount of transferred
bit are as many as the amount of output bits.

entropy
input

Ideviurandom

get_random_bytes

eniropy accumulation

Fig. 1: General Structure of LRNG

Generating output The generator uses the same output
function to extract data from the input pool and two output
pools. The process of the output function includes three steps:
i) updating the pools content, ii) generating random bits,
iii) decrementing the entropy counter. The output function is
precisely described in section IV-D.

IV. BUILDING BLOCKS

In this section, we illustrate all building blocks of LRNG.
At the end, we give a complete algorithm for generating k
bytes random data from each output pool.

A. Entropy Collection

The LRNG collects entropy from different entropy sources,
namely mouse and keyboard activity, disk I/0 event and

interrupt event. For each entropy event fed to the input pool,
three 32 bits valus are recorded: num,which is the type-
value specific to the event, jif fies and cycle, which records
different timing information when the entropy event is mixed
into input pool.

num. The num value are different for each event type.

e keyboard event. The num contains the keyboard press,
the valid range is [0, 255]. Only 8 out of 32 bits are
effective.

e mouse event.
num = (type K 4) ® code & (code > 4) @ value

Type describes the event type: pressing or releasing
the mouse buttons and starting move or ending move
the mouse; code is the mouse button pressed (left,
right or middle) or wheel scrolling and the axis of
the mouse movement (horizontal or vertical); value is
true when mouse buttons are pressed, otherwise false.
Value is 1 or 1 for denoting scrolling direction (1 for
up, 1 for down) in case of wheel scrolling. Value is
the size of movement in case of mouse movement,
10 bits are used for movement. The movement size is
main entropy factor for mouse event.In fact only 12
out of the 32 bits are effective.

e disk event. The num consist of major and minor
numbers which together define a device in OS.

num := 02100 + ((major < 20)|minor)

Assuming an average machine has no more than 8
disks, only 3 out of 32 bits are effective.

e interrupt event. The num contains the interrupt request
channel number, with a valid range of [0,15]. Only 4
out of 32 bits are effective.

jiffies. It represents the jiffy count value of the system at whcih
the events mixed into the input pool. Jiffy is the time between
two ticks of the system timer interrupt and the jiffy count value
represents the total number of ticks of system timer interrupt
from the boot time[4].

cycles. It represennts the CPU cycle count value. Cycles are
aslo measured from the boot time of the device[4].

B. The Mixing Function

The mixing function is applied when the entropy sample
is added into input pool, and when data from the input pool
is transferred from the input pool to one of the output pools.
Algorithm 1 describes the linear mixing function for a pool of
size 32 word. For any byte y, let extension32(y) denote the
extension of y to a 32 bits word. For any word w, w <<< rot
is the bitwise rotation of w to the left by rot bits.

Entropy is added to pool of size 32 words (blocking pool
and nonblocking pool) by running Algorithm 1, and updating
the index i of the pool. One byte is mixed at a time. First,
the byte w is extended to 32 bits (padding with Os). Then, it
is rotated by a changing factor and applied multiplication in
GF(2%%). w is xored with pool entries i, +1,i+ 7,7+ 14,i+
20,7+ 26. Next, the last 3 bits of w choose a table entry which

is xored to (w > 3). the calculated value is assigned to w.
Finally, the pool is updated by xoring w with pool[i]. The index
i is updated after each iteration. The value of i determines the
value of the rotation factor in the nexT round. Every bytes is
mixed into the pool with the same manner.

The same mixing function is applied to the input pool with
the size of 128 words. However, the polynomial is changed to
2128 4 2103 4 276 4 451 4 225 + 2 + 1 and modulo of 128
is calculated instead of 32 . We use this polynomial to update
the w (namely, xoring w with pool entries 4,¢ 4 1,7 + 25,7 4
51,14 76,7 4 103).

In[5], it verifies that the mixing function guarantees that
if an attacker has no knowledge of the three pools but has
complete control of the entropy input, he will gain no addition
knowledge of the new state of three pools after execution of
the mixing function. Such property provides backbones of the
pseudorandomness of the generated data.

Algorithm 1 miz(pool, input)

Input: the pool[32], m input bytes, last stored rotation
factor rot, last input position i, twist_table
Output: The input is mixed into the pool one byte at a
time
1: for j =0tom—1do
2: 1+ 1 — 1(mod 32)
3 w < extension32(input(j))
4: w4~ w <<< rot
5: w <+ w @ pool|i]
6 w 4— w @ pool[(i + 1) mod 32]
7 w 4— w @ pool[(i + 7) mod 32]
8 w <+ w @ pool[(i + 14) mod 32]
9: w 4— w @ pool[(i + 20) mod 32]
10: w 4— w @ pool[(i + 26) mod 32]
11: w (w > 3) & twist_table[w & 7]

12: pooli] + w

13: if 7 = 0 then

14: rot « rot + 14(mod 32)
15: else

16: rot <— rot + 7(mod 32)

C. The Entropy Estimator

The difference of jiffies associated with successive events
of the same type are used to estimate the entropy provided by
the event. The num and cycle values are not used to estimate
the entropy. The entropy is estimated in the following way:

Let t,, denote the timing of the event number n. Define

671 =tn —th-1
52 = 6, — Gy
=t

The entropy mixed into the pool by the event is defined to
be logz (min(|6,], |62, 162)110—30]) Where S,y denotes bits
a to b (inclusive) of S. The entropy is also bounded by a
maximum output of 11 since log,2'! = 11bits. Although each
entropy input consists of a num, jiffies and cycle values, the
LRNG entropy estimation is based only on jiffies which leads
to a pessimistic evaluation. In[5], it shows that LRNG entropy

estimator is pessimistic by the observation that the average
empirical entropy of jif fies is less than that of cycles and
num.

D. The output function

The same output function is used to extract transferring
bits and generate random bits. The output function is depicted
in Figure 2 with the pool size of n.

There are two phases in output generation. Feedback phase
and extraction phase. In the feedback phase, a chained SHA-
1 is applied to the entire pool, the 5 words output value is
mixed into the original pool, resulting an update of the pools
state. In the extraction phase, 16 words are selected from the
updated pool, and again the 16 words are fed into SHA-I.
Finally, the 5 words output value is folded into 10 bytes of
data. The output function always generates 10 bytes data each
time. If the required amount of bytes is multiple of 10, the
output function repeats until all bytes are generated. In the
case of the number of requested bytes is not a multiple of 10,
the last block is truncated to the length of the missing bytes.

0 1) , nie -1

pool [n] | 16 words ‘ i | 16 words. | i m

i H H
4& J\l'\ . >
L g
3
a
g
o
=
- 5 words 5
3
s
pool [n] n words 15 . i
p. - o
Z
o
2
;
=
D SHA-1 @
Input pool: n = 128 “

Both Output pools: n = 32
10 bytes output

Fig. 2: The output function of LRNG

Feedback Phase. The pool is evenly dividedto blocks, each
block has 16 words. The input pool (128 words) has 8 blocks,
2 blocks for both output pools (32 words). The SHA-1 function
is denoted as SHA — 1(CV, M), It takes 20 bytes of chaining
value CV, and message M, output a block with a fixed size
of 20 bytes. Beginning at first block of the pool, the content
of the block and the SHA-1 initial IV value produce a 20
bytes SHA-1 output. This output, together with the content of
block 2 of the pool, are fed into the second SHA-1 function,
generating a 20 bytes output as the chaining value for the next
SHA-1 function. At the end of the day, a 20 bytes output will

be generated from the entire pool. The next step is to mix the
20 bytes into the original pool. The same mixing function in
Algorithm 1 is used here. 20 bytes are added into the pool one
by one, resulting the 20 times updates of the pool content.

Extraction Phase. As mentioned in section IV-B, execution
of mix function results in the index changeas well. In the
next step, 16 words before the pool[i] in the updated pool
are selected. The SHA-1 is used once again, taking these 16
words and the 20 bytes from the feedback phase and generating
20 bytes. Finally, the output of SHA-1 in the extraction
phase is folded to 10 bytes. If wy,. , denotes the bits
m,...,n of the word w, the folding operation of the five words
wWo, w1, W, w3, wy isdone by wo & ws, w1 & wq, w2...15 D
wa[16...31) The 10 bytes are accumulated to the random data
buffer. Once all random data are generated, the buffer will
release the generated random data. The entropy counter of the
affected pool decrements by the number of generated bits.

The pseudo code for output function (nbytes are requested
from pool)is given in Algorithm 2. The Output() function
decides how many bytes of data are extracted from the 10
bytes data in the case of nbytes is not a multiple 10.

Algorithm 2 output(pool, nbytes)
Input: SHA-1 initial IV, pool size n, nbytes
Output: nbytes random data or transferring bits

while nbytes > 0 do
: b+ 1V

forl:Oto%—ldo
b +~SHA-1(b, pool[16l...16] + 15])

1:

2

3

4

5: mixz(pool,b) // Change pool and index i.
6: p < word|[16]

7 for [=0 to 15 do

8 p[l] = poolli — Imod n)

9: b+ SHA-1(b,p)

0 Output(folding(b), min(nbytes, 10))
1 nbytes = nbytes — min(nbytes, 10)

—_

E. Complete Procedure

When £ bits random dataare requested, the generator first
checks whether there is enough entropy in output pool accord-
ing to the entropy counter. If there is enough entropy in output
pool, k bytes are generated from this pool and the entropy
counter for that pool decreases by 8k bits, Otherwise, output
pool requests input pool to transfer the missing entropy. After
a successful transfer, the counter of the input pool decreases
certain bits while the counter of the output pool increases
the same amount of bits. Then the %k bytes are generated
from the output pool, the entropy counter of the output pools
decreases by 8k bits. The entropy transfer happens much more
frequently because the entropy counter of the output pool will
generallyremains close to zero. The amount of transferred bit
are always as many as (blocking pool)or less than (nonblocking
pool) the amount of output bits.

We consider the whole procedure for generating k bytes
from each of the output pools.

Generating data from blocking pool. k bytes random data
are requested to generate by /dev/random. Let h; be the

current entropy counter of the input pool, h, be the current
entropy counter of the blocking pool. If hp < 8K, a transfer
request is sent to the input pool to transfer k — |h,/8] bytes
entropy (usually|h,/8] = 0). Then input pool extracts k bytes,
k = min(|h1/8|, k — |ho/8]). This means that the input
pool never transfer more bits than its entropy counter allows.
Moreover, no transfer is done when the input pool cannot trans-
fer over 8 bytes entropy, k < 8. This requirement alleviates
the denial of service attack[2] and provides a threshold for
backward security[5].

Generator runs the output function in Algorithm 2 to extract
k bytes from the input pool. Then the k bytes are added into
the blocking pool using mix function in Algorithm 1. The
entropy counter of the input pool h; decrements by 8k bits,
while the entropy counter of the blocking pool h, is increased
by 8k bits. If the new h, equals or greater than 8k, the
generator outputs k bytes random data from blocking pool.
The entropy counter of the blocking pool decreases k bytes.
Otherwise, output generation in block pool stops after | h,/8]
bytes, and only continues when enough entropy is mixed into
the input pool.

Algorithm 3 represents the above nature language descrip-
tion.

Algorithm 3 blockingPoolGeneration(pool, k)

Input: block pool pool, input pool inpool, h;, h,, k.
Output: generating k bytes random data
if h, < 8k then
k'« min(maz(k — |ho/8],8),128)
k'« min(k', |hi/8])
if ' >8then
trans < bytelk |
trans + output(inpool, k/)
mixz(pool, trans)
ho ¢ ho + 8k
9: hi + h; — 8k’
10: if h, < 8k then
11: output(pool, | ho/8])
12: ho < ho — 8|ho/8])
13: while input pool has not enough entropy do
14: Wait
15: blocking PoolGeneration(pool, k — | h,/8])
16: else
17: output(pool, k)
18: hy < h, — 8k

SRR A o

Generating data from nonblocking pool. k bytes random
data are requested to generate by /dev/urandom. Let h; be the
current entropy counter of the input pool, h, be the current
entropy counter of the nonblocking pool. If hp < 8k, a transfer
request is sent to the input pool to transfer k — |h,/8| bytes
entropy (usually|h,/8] = 0). Then input pool extracts k bytes,
k = min(|h1/8) —16, k—|h,/8]). This means that the input
pool leaves at least 16 bytes entropy in the pool and never
transfers more bits than its entropy counter allows. Moreover,
no transfer is done when the input pool cannot transfer more
than 8 bytes entropy, k£ < 8.

Generator runs the output function in Algorithm 2 to extract
k bytes from the input pool. Then the k£ bytes are added

into the nonblocking pool using mix function in Algorithm
1. The entropy counter of the input pool h; decrements by 8k
bits, while the entropy counter of the nonblocking pool h, is
increased by 8k bits. In contrast to block pool, random bits are
generated from non blocking pool until £ bytes are generated,
regardless of whether input pool has enough entropy to transfer
as requested.

The above nature language description is represented in
Algorithm 4.

Algorithm 4 nonblockingPoolGeneration(pool, k)

Input: nonblock pool pool, input pool inpool, h;, he, k.
Output: generating k bytes random data
1. if h, < 8k then

2k« min(maz(k — |ho/8),8),128)
3k —min(k',|hi/8] —16)

4 if k' > 8 then

5: trans < bytelk']

6: trans + output(inpool, k:/)

7: mix(pool, trans)

8: ho < ho + 8K

9: hi < h; — 8k’

10: output(pool, k)

11: h, < h, — 8k

V. SECURITY ANALYSIS

CSPRNG with entropy inputs must meet several security
requirements [S][2]:

Pseudorandomness. An attacker with no knowledge of the
internal state of the generator and the entropy input, he can
not compromise the internal state and/or predict future outputs
from current outputs. Moreover, if the attacker controls the
entropy input but has no knowledge of the internal state, he
will gain no additional information on the new state and/or
future outputs.

Forward security. An attacker with knowledge of the current
internal state should be unable to recover the previous outputs
of the generator. Forward security can be provided by a one-
way output function with feedback.

Backward security: Assuming enough future entropy inputs,
an attacker should be unable to predict the future outputs of
the generator based on the knowledge of its current internal
state. If an adversary knows the internal state, he will predict
the corresponding output as well as future outputs until enough
entropy is used to refresh the pool since the output function is
deterministic.

The internal state of LRNG includes the content of input
pool, blocking pool and nonblocking pool. The following
sections analyze the LRNG based on the three requirements.

A. Pseudorandomness

1) : An attacker with no knowledge of the internal state of
the generator and the entropy input, he can not compromise
the internal state and/or predict future outputs from current
outputs.

Only with the knowledge of the current output, the attacker
can not compromise the content of the output pools and the
input pools. Considering the SHA-1 function is one way, the at-
tacker can not recover the corresponding content of the output
pool if he only knows the outputs. The folding operation also
help to eliminate recognizable patterns in the hash function
output. Since the attacker has no control of the entropy input
and assuming the output pool is not compromised, he cannot
learn anything about the input pool. The input pool has a one-
way output, the attacker can not recover the corresponding
content of the input pool even if he knows the one-way output.
To learn those bits, the attacker at least should know the
content of the output pool since the one-way output is mixed
into the output. This conflicts with the assumption.

The attacker can not predict the future output since he does
not know the three pools and does not know of the entropy
input.

2) : An attacker with no knowledge of the internal state
of the generator but controls the entropy input. The design of
the mixing function guarantees that if an attacker controls the
entropy input but does not know of the input pool, he will gain
no additional information on the new state after execution of
the mixing function.

B. Forward Security

If an attacker has knowledge of both the output pool and the
input pool, then he knows the previous state except for the 160
bits (5 words hash value) which were fed back during the last
output generation. This leads to a default resistance of 160 bits,
the attack overhead is 2!, In the kernel version 2.6.10, only
3 words are fed back to the pool after compression function
of the pool. This allowed an overhead of 2°¢ computations,
compared to 2160,

C. Backward Security

1) : The attacker knows the output pool, but not the input
pool. The attacker will keep his knowledge of the output pool
until % bits are transferred from the input pool and mixed into
the output pool. The complexity of guessing the k bits is 2#~*
in average. No transfer is done when the input pool cannot
deliver over 8 bytes of entropy gives an overhead complexity
of 264, If a single byte has been transferred. The backward
security is only 8 bits.

2) : An attacker has knowledge of both the output pool and
the input pool, But if % bits of entropy are collected before the
adversary sees the output, the complexity of guessing the input
is still 2~1 on average. This again leads to a default resistance
of 64 bits.

VI. CONCLUSION

The survey narrows down random number generators in
cryptographic applications to the study of Linux Random
Number Generator. The technical and scientific details of the
LRNG are explained and illustrated. The contributions of the
survey includes i) generalizing the building blocks in LRNG
as algorithms, such as mix function, output function. Both
functions are explained with details in the case of 128 words
pool and 32 words pool. Especially for the output function,

current literature only contains the detailed description of the
output function on a 32 words pool. This survey generalizes the
pool size to n and comprehensively illustrates how the function
works on a n words pool. ii) providing the complete procedure
of random data generation for blocking pool and nonblocking
pool. By linking different building blocks together, one should
have a better understanding of LRNG. iii) summarizing the
resilience of LRNG under cryptographic attacks.

This survey studies twoversions of LRNG, namely kernel
2.6.10, kernel 2.6.30.7. Future work may analyse the most
recent version of Linux kernel(4.19.12) and compare the
difference.

REFERENCES

[1] M. Alimomeni, R. Safavi-Naini, and S. Sharifian. A true random
generator using human gameplay. In International Conference on
Decision and Game Theory for Security, pages 10-28. Springer, 2013.

[2] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the linux random
number generator. In Security and Privacy, 2006 IEEE Symposium on,
pages 15-pp. IEEE, 2006.

[3] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone.
Handbook of applied cryptography. CRC press, 1996.

[4] R. Kumari, M. Alimomeni, and R. Safavi-Naini. Performance analysis
of linux rng in virtualized environments. In Proceedings of the 2015
ACM Workshop on Cloud Computing Security Workshop, pages 29-39.
ACM, 2015.

[5] P Lacharme, A. Rock, V. Strubel, and M. Videau. The linux pseudoran-
dom number generator revisited. 2011.

[6] A.Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker. A statistical test
suite for random and pseudorandom number generators for cryptographic

applications. Technical report, Booz-Allen and Hamilton Inc Mclean Va,
2001.

