
Is JWT Token Really Secure?

Shuai LI

If you are already familiar with the JWTs (JSON Web
Token)[5], then you can skip to section 2 where I discuss
about the possible attacks and fixes found in [6][7][9]. Section
1 gives an introduction to JWTs and one application example
which JWT found really handy - OAuth access tokens.

I. JWT

All JWTs are constructed from three different elements: the
header, the payload and the signature. The first two elements
are JSON objects. The third element is the signature on
the first two elements. All the elements are encoded using
base64 URL encoding algorithm. JWT supports a variety of
signature algorithms (HMAC, RSA, ECDSA). Figure 1 shows
an example of the JWT.

Fig. 1: JWT example

A. The Header

The red element in Figure 1 is the header. Figure 2 shows
the result after decoding. The main purpose of the header is
to specify the token type and the signature algorithm which is
used to sign the token. The token in Figure 1 is a jwt which is
signed using ECDSA algorithm with curve P-256 and SHA-
256[1].

Fig. 2: Header of Token in Figure 1

B. The Payload

The next element in Figure 1 is the payload. Figure 3 shows
the decoded result. The payload is the place where all the
access data is added to. Each assertion is called a claim, the
developers can add customized claims as they need, with the
exceptions of some already registered claims[5].

Some of the registered claims are:

• iss: The issuer of this token.

• sub: Usually a machine-readable identifier of the
client that this token is issued to.

• aud : Service-specific string identifier or list of string
identifiers representing the intended audience for this
token.

• iat: Indicating when this token was originally issued.

• exp : Indicating when this token will expire.

• nbf: Indicating when this token is not to be used
before.

• scope:A JSON string containing a space-separated list
of scopes associated with this token.

Fig. 3: Payload of Token in Figure 1

C. Signature

The last element of the token is the signature, showing in
blue part. The use of the signature is to ensure the authenticity
of the token. Only the token generated by the trusted authority
is considered valid. The authority, when creating the access
token, first encodes the header and the payload using the
base64 algorithm, then signs on the concatenation of the



encoded data. Finally, the signature is appended to the first
two elements. The verifier uses the appropriate key to validate
the authenticity of the token when receives a token,

D. JWT and OAuth 2.0

In OAuth protocol[4], the AS returns an access token
to the client if the permissions requested by the client are
authorized. The access token can be decoded as a JWT[3].
Signed JWTs make good access tokens. The AS can include
all the necessary data in the token and sign the token to
avoid token introspection[8]. The RS can verify the token and
understand the authorization information carried inside of the
token without sending the token back to the AS.

II. ATTACKING JWTS

A. Change the signing algorithm Attack

Attack: For example, if we have a JWT, the decoded header
and the payload look like this:
header:{

alg:”ES256”,
typ:”JWT”

},
payload:{

sub:”Joe”,
role:”user”

}
Since this is a signed token, everyone is free to see the
content. Now the attacker can modify the header and payload
to this:
header:{

alg:”none”,
typ:”JWT”

},
payload:{

sub:”Joe”,
role:”admin”

}
If the attacker manages to use this token correctly, he or she
may escalate the privilege to admin. You probably would point
out that this attack would not work since the original signature
does not valid anymore on the tampered data. However, this
was a severe attack in the past. The reason is that a lot of
jwt libraries choose signature algorithm depending on the
alg information in the token header. The token verification
function usually take two parameters, token and secret. To
pick the correct signature algorithm, the function relies on
the alg claim from the header. In the example above, since
the attacker modified the alg to none, this means that there
is no signature algorithm, the verification will always succeed
regardless the presence of a valid signature.

Fix: Many libraries today report ”alg”: ”none” token as invalid.
The other mitigation is to require the verification algorithm
as an additional input to the verification function, rather than
replying on the alg claim.

B. Changing the algorithm from RS256 to HS256 Attack

Attack: This attack exploits the same vulnerability - verifica-
tion function relies on the alg claim from the header to pick

the signature algorithms. Now, suppose the attacker gets an
access token signed with an RSA key pair.
header:{

alg:”RS256”,
typ:”JWT”

},
payload:{

sub:”Joe”,
role:”user”

}
The token is signed with a RSA private key. Everyone else
in the world should be able to verify the signature using
the corresponding public key. The attacker can forge a new
token using the following scheme. First, he or she modifies
the header and the payload to,
header:{

alg:”HS256”,
typ:”JWT”

},
payload:{

sub:”Joe”,
role:”admin”

}
The algorithm ”HS256” stands for HMAC using SHA 256.
Then, the attacker generates a new signature using the public
key as the secret key fed to HMAC. Let’s take a look at the
verification function, the function will take two parameters,
tokem and publickey. But now, instead of using the public
key to verify the RSA signatures, verification function uses it
as the shared secret for the HS256 algorithms. The verification
function will accept the forged token as a valid token. Now
the attacker can use the forged token to access the resources
with escalated access.

Fix: The mitigation against this attack is similar to the ones
in Section II-A.

C. Invalid Elliptic-Curve Attack

Attack:In elliptic-curve cryptography, the public key is a
point on the elliptic curve, while the private key is simply
a number that sits within a special, but very big, range. Some
implementations, fail to validate the inputs to any arithmetic
operations on elliptic curves. If inputs to these operations are
not validated, the arithmetic operations may produce seemingly
valid results even when they are not. These results, when used
in the context of cryptographic operations such as decryption,
can be used to recover the private key[2]. This attack has been
demonstrated in the past[9]. This class of attacks are known
as invalid curve attacks. Good-quality implementations always
verify that public-keys are a valid elliptic-curve point for the
chosen curve and that private keys sit inside the valid range
of values.

D. Substitution Attack- Different Recipient

Attack: This attack is possible when aud claim is missing
in the JWTs. Consider the case of one AS, multiple resource
servers. All resource servers should be able to validate the
token from the AS. If a token does not contain aud infor-
mation, the malicious client can use the token on the other
resource servers that have the same AS. The client may attain
unauthorized permissions from a unintended RS since the



token, after all, has a valid signature. In the example below,
the client can use this token to attain admin role in a different
RS.
payload:{

sub:”Joe”,
role:”admin”

}
Fix: To prevent this attack, the token must include an aud
claim uniquely specifying the intended audience.

E. Substitution Attack- Same Recipient

Attack: In the above example, we showed a token can be used
to access different resource servers who share the same AS.
The solution is to include an unique aud claim in every token.
In practise, one RS may provide different services, for exam-
ple, the company resource server has two different databases,
company-resource/item-database and company-resource/user-
database. The access to each database has different policies. If
AS generates a token for client A and only grants the access
to the item-database, the payload of the token could look like
this,
payload:{

sub:”Joe”,
role:”admin”
sub:”company-resource/item-database”

}
However, when validating the token, the validation function
made a mistake: It did not validate the aud correctly. Instead
of checking for an exact match, the function checked for
the presence of the company-resource string. An attacker can
leverage this and access to the user-database using the token
issued for item-database.

Fix: To prevent this attack, the validation function must check
for the exact match of the aud claim.

REFERENCES

[1] A. B. Association et al. Public key cryptography for the financial services
industry: The elliptic curve digital signature algorithm (ecdsa). ANSI X9,
pages 62–1998.

[2] I. Biehl, B. Meyer, and V. Müller. Differential fault attacks on elliptic
curve cryptosystems. In Annual International Cryptology Conference,
pages 131–146. Springer, 2000.

[3] O. W. Group. The oauth 2.0 authorization framework: Jwt secured
authorization request (jar). https://tools.ietf.org/html/draft-ietf-oauth-
jwsreq-19, 2019. Work in progress. Accessed on May 2019.

[4] D. Hardt. The oauth 2.0 authorization framework. Technical report,
2012. https://tools.ietf.org/html/rfc6749.

[5] M. Jones, P. Tarjan, Y. Goland, N. Sakimura, J. Bradley, J. Panzer, and
D. Balfanz. Json web token (jwt). Technical report, 2012. https://tools.
ietf.org/html/rfc7519.

[6] S. Langkemper. Attacking jwt authentication. https://www.
sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/, 2016. Ac-
cessed on Oct 2019.

[7] S. Peyrott. The jwt handbook. Seattle, WA, United States, 2016.
[8] J. Richer. Oauth 2.0 token introspection. Technical report, 2015.
[9] A. Sanso. Critical vulnerability uncovered in json encryp-

tion. http://blogs.adobe.com/security/2017/03/critical-vulnerability-
uncovered-in-json-encryption.html. Accessed on Oct 2019.

https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-19
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-19
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/
http://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-json-encryption.html
http://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-json-encryption.html

	JWT
	The Header
	The Payload
	Signature
	JWT and OAuth 2.0

	Attacking JWTs
	Change the signing algorithm Attack
	Changing the algorithm from RS256 to HS256 Attack
	Invalid Elliptic-Curve Attack
	Substitution Attack- Different Recipient
	Substitution Attack- Same Recipient

	References

