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Using Deep Learning in Manufacturing
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Goals

• Deep learning techniques have been used for tasks such as classification and prediction 
because of their ability to efficiently and effectively analyze different types of data, e.g., images, 
sounds, and vibrations  

Challenges  

• Deep learning models require large and high-quality labeled training data
• Training data may have low quality, such as lack of labels and imbalanced class distribution 



Transfer Learning 
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Example: Picture vs Cartoon
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Example: Medical Data from Different Hospitals 
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Credit: Camelyon17 dataset. https://wilds.stanford.edu/datasets/

https://wilds.stanford.edu/datasets/


Related work - Transfer Learning
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Underlying 
technique

Related work Source and target 
can have different 
dimensions 

Imbalanced 
target data 

Fine Tuning Deep Transfer Learning
[Shao S, et al., 2018] 

Adversarial 
Domain 
Adaptation

DANN 
[Ganin Y, et al., 2016]

ADDA 
[Tzeng et al., 2017]

GAN-based
[Singla et al., 2020]

Our approach



Related work – Dealing with Imbalanced Data 
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Generative models 

• Generate realistic synthetic data samples 
• Generative adversarial networks (GAN) [Goodfellow et al., 2020]
• Autoencoders (AE) [Engel et al., 2017]
• Diffusion models  [Jonathan et al. 2022]

Problem: 
Systems built using synthetic data sets often fail when deployed to the real world. 



Overview of our pipeline
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AE-based data augmentation Proposed Adversarial DA approach



AE-based Data Augmentation
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Proposed Adversarial DA approach 
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Maximize label classification accuracy + 
minimize domain classification accuracy
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Application –Wafer defect prediction 
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• Integrated circuits (IC) are made by creating 
circuit structures on many layers of a single wafer 
and interconnecting the structures using wires.

• The wafer surface must be extremely clean
• No particles (e.g., rock and ring shapes)
• Flaws (e.g., spots and scratches)

• Human operator inspects the scanned microscope 
images of the wafer surface



Application –Wafer defect prediction 
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Source data: MixedWM38 Dataset 

• Total of 38,000 wafer maps

• 1 normal pattern, 8 single defect 
patterns

• 29 mixed defect patterns

• Each pattern has 1000 good quality 
samples/images 

https://github.com/Junliangwangdhu/WaferMap

https://github.com/Junliangwangdhu/WaferMap


Application –Wafer defect prediction 
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Target data: WM - 811K Dataset 

• 172,950 images with manual label

• 1 normal pattern, 8 single defect 
patterns

The dataset has several 
problems!  



Application –Wafer defect prediction 
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Problem 1
A large amount of unlabeled 
samples 

https://www.kaggle.com/qingyi/wm811k-wafer-map

WM-811K wafer map

Problem 2
Varying sizes of input

Problem 3 
Extremely imbalanced dataset 

https://www.kaggle.com/qingyi/wm811k-wafer-map


Description of Experiments 
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We compare our pipeline with different approaches. All the methods we consider are: 

• Proposed adversarial DA
• Fine-tuning 

• Retrain the last two convolution blocks of a pre-trained VGG 16 model using the target data
• Vanilla classifier (No adaptation)

We evaluate each method under two settings 

• Augmented target data 
• Original (Imbalanced) target data



Results and Analysis
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Future work 
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• Handle the domain shift and accomplish effective knowledge transfer in the non-classification 
task such as optimization 

• While we use available data from a single source domain to improve the generalization on a 
related target task, one may find data from many related domains useful. 

• Another limitation of our approach is that it requires at least some labeled data from each class 
in the target domain. 
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Loss functions
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• The discriminator loss is calculated as 

• The generator loss is the above loss with inverted domain truth labels. 

• The classification loss 𝐿$ is calculated as



Learning Dynamics 
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where 𝜇 is the learning rate. The hyperparameters 𝛽, 𝛾 are the relative weights of the loss 
functions. 
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Results and Analysis



Synthetic Data Augmentation
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• Diffusion models
• Diffusion models have high computational costs due to the iterative steps during 

training, making them unsuitable for tasks that are time-sensitive
• GAN

• GANs are known to have training instability and being prone to mode collapse during 
training

• GANs also require large amounts of training data

• Why we chose AE-based method? 
• The autoencoder-based data augmentation method requires less data for training, 

hence it aligns with the problem setting where the target has limited data
• It is also faster than the more complicated diffusion model


