
A Technical Look into Flotera Ransomware

Adrian (Shuai) Li

Purdue University
li3944@purdue.edu

1 Introduction

Ransomware has been wreaking havoc since the mid-2000s. 2016 was the year
when ransomware reigned, with 247 new ransomware families [15]. All can render
the victim’s system unusable by encrypting important files and then asking the
user to pay a ransom to revert the damage. Improved ransomware variants con-
tinue to be seen since then, often with devastating results. Today’s ransomware
families encrypt the files and communicate with Command-and-Control servers
for possible data exfiltration. This report will cover a behavioral analysis done on
a strain named “Flotera”. The “Flotera” strain is evolved from the “Polski” and
“Vortex” strains (“Polski” was the first on the scene). This report will cover one
of the samples of Flotera, which was available through HybridAnalysis. The goal
of this report is to present the static and dynamic behavior analysis of Flotera
ransomware. More specifically, this report will answer the following questions.

– Does Flotera use any techniques for defense evasion?
– Does Flotera use any techniques that establish a foothold onto the system?
– Does Flotera target certain types of files in certain folders?
– What encryption scheme does Flotera use?
– Does Flotera communicate with its C2 servers?

2 Related work:

Ransomware detection and analysis: As the new variants easily evade
signature-based mechanisms, researchers try to develop alternative approaches
based on analyzing ransomware behaviors. The key insight is that ransomware
must tamper with a user’s file to mount a successful attack. Kharaz et al. [10]
proposed the UNVEIL system that automatically creates an artificial user en-
vironment and monitors how ransomware interacts with that environment. Re-
searchers are also looking into the detection of ransomware using machine learn-
ing [1,11,13]. These approaches select the relevant features that characterize the
ransomware behavior and then classify each newly-installed application through
a machine learning algorithm.

Today, an important enabler for behavior-based ransomware detection is dy-
namic analysis. The ransomware sample is launched in an isolated, controlled
environment, and its behavior is observed during run time. The study of Flotera
adopts other ransomware analysis, such as the one done on “Maze” ransomware
by Bitdefender [3]. This research will be based on the previous ransomware
project to build an idea of what behaviors to expect.

Polski-Vortex-Flotera According to Bleeping Computer [4], this ransomware
family primarily targeted polish users. First on the scene was the Polski ran-
somware, which was first detected in late January 2017. The Polski used a Sigaint
email address for payments, and because the Sigaint email service went down
in Feb 2017, the attacker created a new strain named Vortex in March. Vortex
used the same ransom note but dropped the ransom from $249 to $199. Flotera
strain was detected in live infection later in April.

The polish security researchers from Zaufana Trzecia Strona (ZTS) [8] claim
that the ransomware was not spread via email campaigns. Instead, the attacker
used the remote access trojan vjworm to access the victim’s computer and then
install the ransomware by hand.

Mainly three individual security researchers analyzed the ransomware family:

1. Adam Haertle: Haertle published a comprehensive report about “Vortex”
strain on the polish website ZTS [8]. The analysis covered five areas: registry
key modification for persistence, session key generation, C2 communications,
file scanning, and the encryption process mechanism. He stated that the ran-
somware would encrypt files in a list of folders. The ransomware encrypts the
files using AESxWin with an AES key obtained from a publicly available key
generation service. The encrypted files are renamed with the aes extension.
The progress of its activity is written in a log file in the victim’s system.
After getting all the data, the ransomware sends the data to its C2 server,
including the encryption key. The report did not look at the newest strain,
Flotera.

2. Catalin Cimpanu: Haertle’s report was written in Polish. An English version
of the original article was published on BleepingComputer by Cimpanu [4].
It also explains the timeline of Polski, Vortex, and Flotera strains briefly.

3. Michael Gillespie: Gillespie had created a decrypter for the Vortex ran-
somware that he offered the decrypter to victims in private [5].

3 Methodology

This report uses the Flotera sample through HybridAnalysis. The SHA256 hash
value of the sample is “8ad4d1f7b46b5f6d28f3e4206a1263bdb88808f39061602bcca
4d4e9e61170d0”. The analysis was performed on a designated lab environment
consisting of two isolated virtual hosts running on an access-restricted physi-
cal device. Section 3.1 will go over the environment setup in detail. Approaches
used in the analysis include static analysis and reverse engineering, dynamic
analysis with debuggers. The lab environment, including the sample and any
installed applications, will be destroyed to prevent the unexpected spread of the
ransomware.

3.1 Lab environment

The setup uses Parallels hypervisors to build two hosts-only machines and con-
figures them in the same LAN (Figure 1). Parallels supports system snapshots

Parallels Hypervisor

Windows Kali

10.211.55.4 10.211.55.6

Internet

192.168.1.125

Subnet 10.211.55.0/24

Original request to sethcardoza.com

redirect to

sethcardoza.com

Fig. 1: Analysis lab environment

where the state of the VM is captured. This feature enables us to roll back the
VM to a clean state after each analysis round. In analysis round 4, the hypervi-
sor was set to the shared networking mode, and the host-only mode was used for
round 5. In the shared networking mode, each virtual machine has full internet
access. It is necessary for the analysis because the ransomware will call a public
password generator service. In the host-only network mode, each VM can only
communicate to other VMs.

To run the sample, one VM was installed with Windows 10 Home 64-bit
Edition. The Windows Security features were all turned off, including virus &
threat protection, ransomware protection. Even so, Windows can still detect the
Flotera ransomware during dynamic analysis. This issue was resolved by manu-
ally add the Flotera ransomware into the allowed threats in Windows security.
A fake user space was set up with fake user files of different sizes.

A second VM is built using Kali Linux 2021.1 release, which includes addi-
tional implementation and will act as a server that provides a required service by
Flotera. Section 3.3 will explain why a second VM is need and how the service
is implemented on this VM.

3.2 Analysis

Round 1: First, a snapshot of the system was taken before the first run. After
running the sample, a CMD terminal opened, and a single process was noticed.
However, no files were encrypted. The ransomware was executed again in a clean
system state with admin privileges. Still, the sample was not able to encrypt the
files. A possible reason could be that the sample was corrupted. It is also likely
that the sample may require an internet connection for proper execution. Further
investigation is needed to account for the encryption failure.

Round 2: File property analysis takes place in this round. Initially, the sample
was loaded into Detect it Easy (DIE) tool [9] to retrieve general information
about the sample. The results show that the sample was written in C# on .NET
platforms. No obfuscation or packer use was identified. It means that the binary
executive can be effectively decompiled into a higher-level representation similar
to the source code.

Round 3: In this round, the sample was run through dnSpy debugger [7], which
can debug and edit .NET assemblies. As expected, the translation of the binary
executable was extremely close to the source code. One goal of this round was
to retrieve some details about the code. For example, are there any strings in
the code, such as hard-code C2 server URLs or hardcoded encryption key? This
round also aimed to identify the flow of function calls and prepare for dynamic
analysis. The sample was not executed in this round.

Round 4: In this round, dnSpy was used and set breakpoints at function calls.
Debugging the sample allowed us to control the execution of the ransomware and
monitor the variable content and the stack view. In this round, the debugging
process helped to demystify the encryption failure in Round 1. The ransomware
obtains a 120-character password from a public random number generation ser-
vice hosted at domain sethcardoza.com. Then, the ransomware transforms this
password into a key, which is later used for file encryption.

The problem is that this service is no longer accessible for some unknown
reasons. As a result, the ransomware will terminate and throw a ”server not
found” exception, making it impossible to debug and observe the entire runtime
behavior. Cicala suggested building up a replicated server providing the same
service and directing the messages to the replica using DNS spoofing attacks.
However, this option only works if we can find out the exact implementation
of the original server. Luckily, the owner of the domain sethcardoza.com posted
the server implementation on his Github. The replicated server was set up on
the Kali VM. The research could redirect the traffic from the sethcardoza.com
to the replicated server using DNS spoofing attacks.

Round 5: In this round, debuggers were used again to analyze the encryption
scheme. File deletion, encryption, and modification were observed in the final
round.

Fig. 2: Redirecting the traffic from sethcardoza.com to 10.211.55.6

3.3 DNS spoofing

DNS translates domain names to IP addresses so browsers can load Internet
resources. The process of translation/DNS resolution involves interaction with
DNS servers. DNS spoofing is an attack of subverting the resolution of DNS
queries so that the DNS server responds with a different IP address pointing to
a site controlled by the attacker. There are mainly two ways of achieving this,

– MIMT: Attackers intercept communication between a user and a DNS server
and provide a different IP address pointing to a malicious site.

– Rogue DNS server: Attacks hack a DNS server and change DNS records to
return a different IP address pointing to a malicious site.

Consequently, when the user intends to visit a legitimate website such as
google.com, they will be redirected to a malicious site such as google.attacker.com.

Recall in Section 3.2: the research identified the issue of server no longer
found during ransomware execution. More specifically, the ransomware calls URL
“http://www.sethcardoza.com/api/rest/tools/random password generator/leng
th:120/complexity:alphaNumeric” to get the password. Although this URL does
not work anymore, the owner of the sethcardoza.com domain published the im-
plementation of its backend API on their Github [12]. It implements a function
of random strings generation over an alphabet consisting of English letters, 0-9
numbers, and special characters in PHP.

The idea is to set up a fake server running the random string generation
function and redirect the traffic from the original URL to our fake server us-
ing DNS spoofing. There are many tools available for DNS spoofing attacks.
The research uses bettercap [2], and it performs DNS spoofing attacks with the
MIMT approach. The remaining steps are straight forward: a PHP server was
set up and running at IP address 10.211.55.6(Kali VM), the path of the server is
“10.211.55.6/api/rest/tools/random password generator/length:120/complexity:

Table 1: Registry keys created by Flotera

Registry Key Value
Name

Value Data (String)

Directory\Background
\shell\AESxWin

Empty
icon

Encrypt\Decrypt with AESxWin
Application.ExecutablePath

Directory\Background
\shell\AESxWin\command

Empty Application.ExecutablePath\“%V\”

Directory\shell\AESxWin Empty
icon

Encrypt\Decrypt with AESxWin
Application.ExecutablePath

Directory\shell\AESxWin
\command

Empty Application.ExecutablePath\“%1\”

alphaNumeric”. The bettercap was installed on the Kali machine. Bettercap re-
quires three parameters for spoofing attack: the target IP (Windows VM IP:
10.211.55.4), the spoofing domain (sethcardoza.com), and the IP address in re-
sponse to DNS query (PHP server IP: 10.211.55.6). Figure 2 shows the activity
of bettercap dns.spoof in the presence of DNS query sent from the ransomware
during runtime.

4 Analysis results

4.1 Persistence

At startup, the ransomware registers itself in Windows Registry under HKEY
CLASSES ROOT\DIRECTORY. HKEY CLASSES ROOT is the top-level sys-
tem key that holds information about installed applications and their associate
file extensions. The ransomware achieves two goals by creating the registry keys
shown in Table 1. First, the system loads the setting of the registry into memory
whenever it restarts. Second, the ransomware checks the stored registry keys to
find its configuration setting at startup.

4.2 File scanning and backup deletion

Before enumerating files, any existing Windows backups are destroyed, namely
the Volume Shadow Copies. This is done using windows utilities called VSSAD-
MIN.EXE.

The following folders are searched for files to encrypt. These folders are added
to StartPaths list.

– Environment.SpecialFolder.Personal
– Environment.SpecialFolder.Recent
– Environment.SpecialFolder.MyPictures
– Environment.SpecialFolder.MyMusic
– Environment.SpecialFolder.MyVideos

Fig. 3: Ransom note

– Environment.SpecialFolder.Favorites
– Environment.SpecialFolder.CommonDocuments
– Environment.SpecialFolder.CommonPictures
– Environment.SpecialFolder.CommonMusic
– Environment.SpecialFolder.CommonVideos
– Environment.SpecialFolder.CommonDesktopDirectory
– and all drives RootDirectory

The following folders are excluded from encryption:

– Application.ExecutablePath
– Environment.SpecialFolder.ApplicationData
– Environment.SpecialFolder.LocalApplicationData
– Environment.SpecialFolder.CommonApplicationData
– ”C:\\Program Files\\Common Files”

The ransomware first skips the folder where the executable is located. The reason
why the rest folders get skipped can be because the attacker wants the system
to keep function properly.

4.3 Encryption

For each directory in StartPaths, the ransomware will encrypt files in the direc-
tory recursively except those that end with .aes or unsupported extensions. The
details of the target extension list are not included due to the page limit. The
original file is replaced by the encrypted data in place. For this, the data is read
from the file, data is encrypted, then the encrypted data is written back to the

file, and finally, the file is closed and its name is appended with .aes extension.
The ransomware drops a ransom note named !!!-ODZYSKAJ-DANE-!!! in each
encrypted folder. The ransom note includes the victim’s IP and current time.
Figure 3 shows the English translation of the original ransom note in Polish.

4.4 File encryption

Flotera uses SharpAESCrypt library [14], which is a C# implementation of file
encrytion and decryption using AESCrypt file format [6].

The AESCrypt file format is shown below. This was validated with the en-
crypted files through Hex editor.

– 3 Octets - ’AES’.
– 1 Octet - 0x02 (Version).
– n Octet - extension block section. This is where some user-defined“tags” that

may be inserted as plaintext into the encrypted file.
– 16 Octets - Initialization Vector (IV1) used for encrypting the IV2 and sym-

metric key (Key2) that is actually used to encrypt the plaintext file.
– 48 Octets - Encrypted IV2 and 256-bit Key2 using AES Key1 . The first 16

octets are IV2, followed by 32 octets of Key2 .
– 32 Octets - HMAC (Encrypted IV2 and Key2 ,Key1).
– nn Octets - Encrypted message.
– 1 Octet - File size modulo 16 in least significant bit positions.
– 32 Octets - HMAC (Encrypted message,Key2).

The HMAC values protect data integrity. The following section shows how
Flotera generates these keys and initial vectors for encryption.

4.5 Encryption keys

Figure 4 shows the keys generation and file encryption. New IVs and keys are
generated for different files. IV1 is generated by DigestRandombyte(byte[] byte,
int repetitions) function, which performs repeated hashing of the data in the
Bytes() combined with random data. The time and the victim’s MAC address are
components in the input. AES Key1 is generated by hashing the concatenation
of IV1 and password 8192 times. The password parameter is the random string
obtained from sethcardoza.com.

IV2 is randomly generated using DigestRandomByte() with a predefined IV
value. AES Key2 is randomly generated using DigestRandomByte() with a pre-
defined key value.

The Key2 is written in the processed file encrypted with the Key1 , using AES
256. The HMAC of the encrypted Key2 is stored and calculated using HMAC
256 with Key1 . The file is then encrypted using AES 256 with Key2 . Afterward,
the HMAC of the encrypted content is stored and calculated with Key2 .

File decryption can be performed if Key1 is revealed. Theoretically, this can
be done by hashing the password and IV1 8192 times. The research has iden-
tified the password value by examing the memory during debugging process.
Decrypting the Key2 and further recovering the encrypted file is possible.

DigestRandombyte()

random
data

Time, MAC

IV1
Generate

Hash Function

password

Key1

IV1

Generate

DigestRandombyte()

random
 data

IV2
Generate

DigestRandombyte()

random
 data

Key2
Generate

Key2 Encrypted Key2
Key1 IV1

Encrypt

File Encrypted Content
Key2 IV2

Encrypt

Encrypted Key2 HMAC
Key1

HMAC

Encrypted Content HMAC
Key2

HMAC

Encrypted File

Fig. 4: Flotera Encryption

4.6 Network connections

Besides calling a benign public service, the malware tries to connect to a C2
host for further instructions and possible data exfiltration. The list of contacted
hosts was found in the binary.

The following outbound connections were seen from this sample: POST
http://aktualizacja.tk/api/

The data sent to the C2 hosts is the computer fingerprint and the password.
The data is sent over plain text and looks like this:

IP: 787253e9-5f2a-4a96-b6d9-05c6e8b6f568
ComputerID: 787253e9-5f2a-4a96-b6d9-05c6e8b6f568
Date: 04-11-2021
password: AzL887(jl5a3ZvUIscza*6yWEW@WGLEI03M3gmb4)i4ICEEJ8Jj4Ê

9F$rV)7RVl0ln(Dr)4-K0L&k*va1PeKDJs2GCLw10(u5IrU-wPSoJ4u9TRK5xw
&&zC

4.7 Event logging

The progress of its activity is written to a file, including the first four characters
of the password, the encryption folder, the encrypted file, and exceptions during
execution. The log is located at: C:\ProgramData\Keyboard. A log file example
is included in Appendix A.

5 Conclusion

As part of our research, related work on Vortex by other individuals was used
to compare our analysis on Flotera. Flotera inherits some behaviors from its
predecessor, Vortex. Therefore, the research has identified some characteristics
of Flotera, which match what Haertle and Cimpanu covered in their analysis.

– They both call the same publicly available internet service to request the
password.

– The fact that they both encrypt files in specific folders.
– Flotera and Vortex both use AES-256 encryption.
– The same .aes extension is added to the encrypted file names.
– The same amount of ransom is charged.
– Both malware tries to connect to a C2 host. They both send the same types

of data (IP, ComputerID, Date, password) to the C2 host.

On the contrary, the research has identified how Vortex evolved to be Flotera,

– Flotera uses a different encryption model, cryptographic library, and key
generation strategy. Vortex uses simple AES encryption with the AESxWin
library. There is no protection on the encryption key. No prior work indicates
whether Vortex used different keys for different files.

– Flotera extends the lists of folders to be encrypted.
– Flotera skips system and application data folders.
– The outbound connections flow to a different C2 host.
– Flotera adds different registry keys for persistence.

Due to time constraints, the analysis of process activities was not conducted.
With the help of the process analysis before, during, and after execution, one
can investigate more details on the running processes.

References

1. Arabo, A., Dijoux, R., Poulain, T., Chevalier, G.: Detecting ransomware using
process behavior analysis. Procedia Computer Science 168, 289–296 (2020)

2. bettercap: Bettercap release v2.31.0. https://www.bettercap.org/ (2021), Ac-
cessed on April 2021

3. Bitdefender: A technical look into maze ransomware. https://download.bitdefe
nder.com/resources/files/News/CaseStudies/study/318/Bitdefender-TRR-

Whitepaper-Maze-creat4351-en-EN-GenericUse.pdf (2020), Accessed on Feb
2021

4. Cimpanu, C.: The polski-vortex-flotera ransomware connection. https:

//www.bleepingcomputer.com/news/security/the-polski-vortex-flotera

-ransomware-connection/ (2017), Accessed on April 2021
5. Cimpanu, C.: Author of polski, vortex, and flotera ransomware families arrested

in poland. https://www.bleepingcomputer.com/news/security/author-of-pol

ski-vortex-and-flotera-ransomware-families-arrested-in-poland/ (2018),
Accessed on April 2021

6. Crypt, A.: Aes file format. https://www.aescrypt.com/aes_file_format.html

(2021), Accessed on April 2021
7. dnSpy: dnspy - latest release. https://github.com/dnSpy/dnSpy (2021), Accessed

on April 2021
8. Haertle, A.: Nieuchwytny polski ransomware z arabskim akcentem w kocu za-

pany. https://zaufanatrzeciastrona.pl/post/nieuchwytny-polski-ransomwa

re-z-arabskim-akcentem-w-koncu-zlapany/ (2017), Accessed on April 2021
9. horsicq: Detect-it-easy. https://github.com/horsicq/Detect-It-Easy, Accessed

on April 2021
10. Kharaz, A., Arshad, S., Mulliner, C., Robertson, W., Kirda, E.: {UNVEIL}: A

large-scale, automated approach to detecting ransomware. In: 25th {USENIX}
Security Symposium ({USENIX} Security 16). pp. 757–772 (2016)

11. Morato, D., Berrueta, E., Magaña, E., Izal, M.: Ransomware early detection by
the analysis of file sharing traffic. Journal of Network and computer Applications
124, 14–32 (2018)

12. sethcardoza: random-password-generator/random-password-generator.php.
https://github.com/sethcardoza/random-password-generator/blob/master

/random-password-generator.php (2017), Accessed on April 2021
13. Sgandurra, D., Muñoz-González, L., Mohsen, R., Lupu, E.C.: Automated dynamic

analysis of ransomware: Benefits, limitations and use for detection. arXiv preprint
arXiv:1609.03020 (2016)

14. SharpAESCrypt: Sharpaescrypt. https://github.com/kenkendk/sharpaescrypt

(2019), Accessed on April 2021
15. TrendMicro: Ransomware past, present, and future. https://documents.trendmic

ro.com/assets/wp/wp-ransomware-past-present-and-future.pdf (2017), Ac-
cessed on April 2021

A Event logging example

Fig. 5: Log file example

